9 mar 2010

BackBone

consiste en algunas supercomputadoras enlazadas permanentemente mediante conexiones de alta velocidad.
el resto de las redes locales se cncta al backbone a travez de un provedor de servicios de interner

Clasificacion de redes

Red pública: una red publica se define como una red que puede usar cualquier persona y no como las redes que están configuradas con clave de acceso personal. Es una red de computadoras interconectados, capaz de compartir información y que permite comunicar a usuarios sin importar su ubicación geográfica.
Red privada: una red privada se definiría como una red que puede usarla solo algunas personas y que están configuradas con clave de acceso personal.

Red de área Personal (PAN): (Personal Area Network) es una red de ordenadores usada para la comunicación entre los dispositivos de la computadora (teléfonos incluyendo las ayudantes digitales personales) cerca de una persona. Los dispositivos pueden o no pueden pertenecer a la persona en cuestión. El alcance de una PAN es típicamente algunos metros. Las PAN se pueden utilizar para la comunicación entre los dispositivos personales de ellos mismos (comunicación del intrapersonal), o para conectar con una red de alto nivel y el Internet (un up link). Las redes personales del área se pueden conectar con cables con los buses de la computadora tales como USB y FireWire. Una red personal sin hilos del área (WPAN) se puede también hacer posible con tecnologías de red tales como IrDA y Bluetooth.

Red de área local (LAN): una red que se limita a un área especial relativamente pequeña tal como un cuarto, un solo edificio, una nave, o un avión. Las redes de área local a veces se llaman una sola red de la localización. Nota: Para los propósitos administrativos, LANs grande se divide generalmente en segmentos lógicos más pequeños llamados los Workgroups. Un Workgroups es un grupo de las computadoras que comparten un sistema común de recursos dentro de un LAN.

Red de área local virtual (VLAN): Una Virtual LAN ó comúnmente conocida como VLAN, es un grupo de computadoras, con un conjunto común de recursos a compartir y de requerimientos, que se comunican como si estuvieran adjuntos a una división lógica de redes de computadoras en la cuál todos los nodos pueden alcanzar a los otros por medio de broadcast (dominio de broadcast) en la capa de enlace de datos, a pesar de su diversa localización física. Con esto, se pueden lógicamente agrupar computadoras para que la localización de la red ya no sea tan asociada y restringida a la localización física de cada computadora, como sucede con una LAN, otorgando además seguridad, flexibilidad y ahorro de recursos. Para lograrlo, se ha establecido la especificación IEEE 802.1Q como un estándar diseñado para dar dirección al problema de cómo separar redes físicamente muy largas en partes pequeñas, así como proveer un alto nivel de seguridad entre segmentos de redes internas teniendo la libertad de administrarlas sin importar su ubicación física

Red del área del campus (CAN): Se deriva a una red que conecta dos o más LANs los cuales deben estar conectados en un área geográfica específica tal como un campus de universidad, un complejo industrial o una base militar.
Red de área metropolitana (MAN): una red que conecta las redes de un área dos o más locales juntos pero no extiende más allá de los límites de la ciudad inmediata, o del área metropolitana. Los enrutadores (routers) múltiples, los interruptores (switch) y los cubos están conectados para crear a una MAN.

Red de área amplia (WAN): es una red de comunicaciones de datos que cubre un área geográfica relativamente amplia y que utiliza a menudo las instalaciones de transmisión proporcionadas por los portadores comunes, tales como compañías del teléfono. Las tecnologías WAN funcionan generalmente en las tres capas más bajas del Modelo de referencia OSI: la capa física, la capa de enlace de datos, y la capa de red.

Red de área de almacenamiento (SAN): Es una red concebida para conectar servidores, matrices (arrays) de discos y librerías de soporte. Principalmente, está basada en tecnología de fibra ó iSCSI. Su función es la de conectar de manera rápida, segura y fiable los distintos elementos de almacenamiento que la conforman.

Red irregular: Es un sistema de cables y buses que se conectan a través de un módem, y que da como resultado la conexión de una o más computadoras. Esta red es parecida a la mixta, solo que no sigue con los parámetros presentados en ella. Muchos de estos casos son muy usados en la mayoria de las redes.

Topoligia de red

La topología de red se define como la cadena de comunicación usada por los nodos que conforman una red para comunicarse. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento.

La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.

*topología en estrella es la posibilidad de fallo de red conectando todos los nodos a un nodo central. Cuando se aplica a una red basada en la topología estrella este concentrador central reenvía todas las transmisiones recibidas de cualquier nodo periférico a todos los nodos periféricos de la red, algunas veces incluso al nodo que lo envió. Todos los nodos periféricos se pueden comunicar con los demás transmitiendo o recibiendo del nodo central solamente. Un fallo en la línea de conexión de cualquier nodo con el nodo central provocaría el aislamiento de ese nodo respecto a los demás, pero el resto de sistemas permanecería intacto. El tipo de concentrador hub se utiliza en esta topología.

La desventaja radica en la carga que recae sobre el nodo central. La cantidad de tráfico que deberá soportar es grande y aumentará conforme vayamos agregando más nodos periféricos, lo que la hace poco recomendable para redes de gran tamaño. Además, un fallo en el nodo central puede dejar inoperante a toda la red. Esto último conlleva también una mayor vulnerabilidad de la red, en su conjunto, ante ataques.
Si el nodo central es pasivo, el nodo origen debe ser capaz de tolerar un eco de su transmisión. Una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.

* topología en árbol: puede ser vista como una colección de redes en estrella ordenadas en una jerarquía. Éste árbol tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores. Al contrario que en las redes en estrella, la función del nodo central se puede distribuir.
Como en las redes en estrella convencionales, los nodos individuales pueden quedar aislados de la red por un fallo puntual en la ruta de conexión del nodo. Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto.
Para aliviar la cantidad de tráfico de red que se necesita para retransmitir todo a todos los nodos, se desarrollaron nodos centrales más avanzados que permiten mantener un listado de las identidades de los diferentes sistemas conectados a la red. Éstos switches de red “aprenderían” cómo es la estructura de la red transmitiendo paquetes de datos a todos los nodos y luego observando de dónde vienen los paquetes respuesta.


*BUS se caracteriza por tener un único canal de comunicaciones al cual se conectan los diferentes dispositivos. De esta forma todos los dispositivos comparten el mismo canal para comunicarse entre sí.
Los extremos del cable se terminan con una resistencia de acople denominada terminador, que además de indicar que no existen más ordenadores en el extremo, permiten cerrar el bus por medio de un acople de impedancias.

Es la tercera de las topologías principales. Las estaciones están conectadas por un único segmento de cable. A diferencia de una red en anillo, el bus es pasivo, no se produce generación de señales en cada nodo o router
ventajas:
Facilidad de implementación y crecimiento.
Simplicidad en la arquitectura.
desventajas
Longitudes de canal limitadas.
Un problema en el canal usualmente degrada toda la red.
El desempeño se disminuye a medida que la red crece.
El canal requiere ser correctamente cerrado (caminos cerrados).
Altas pérdidas en la transmisión debido a colisiones entre mensajes.
Es una red que ocupa mucho espacio

*Red en enillo: Topología de red en la que cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación.

En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evitan eventuales pérdidas de información debidas a colisiones.

Cabe mencionar que si algún nodo de la red deja de funcionar, la comunicación en todo el anillo se pierde.

En un anillo doble, dos anillos permiten que los datos se envíen en ambas direcciones. Esta configuración crea redundancia (tolerancia a fallos).


ren malla: es una topología de red en la que cada nodo está conectado a todos los nodos. De esta manera es posible llevar los mensajes de un nodo a otro por diferentes caminos. Si la red de malla está completamente conectada, no puede existir absolutamente ninguna interrupción en las comunicaciones. Cada servidor tiene sus propias conexiones con todos los demás servidores.

Modelo OSI y capas

modelo de referencia de Interconexión de Sistemas Abiertos:
fue el modelo de red descriptivo creado por la Organización Internacional para la Estandarización lanzado en 1984. Es decir, fue un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.

El modelo es considerado una arquitectura de redes, ya que especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:

Nivel RED: especifica informacion detallada de como se envian sisicamente los datos atravez de la red.

Nivel INTERNET: realiza el direccionamiento logico y la determinacion de la ruta de los datos hasta su receptor final

NIVEL TRANSPORTE: es el encargado de efectuar el ransporte de los datos que estan dentro del paquete, de la maquina de origen a al de destino.

Nivel APLICACION: contiene las aplicaciones de red que permiten la comunicación mediate las capas inferiores, son servicios de red o aplicaciones brindarlas al usuario para propicionar la interfaz con el sistema operativo.


Capas: Proveen al usuario una serie de servicios para lograr la comunicación ente las computadoras. Los sistemas de red utilizan una serie de capas superpuestas una encima de otra en la que cada una desempeña una función.
Una capa permite fraccionar el funcionamiento de un protocolo, también facilita la compatibilidad tanto del software como del hardware.
En lugar de utilizar el hardware de red directamente las redes utilizan módulos de software que ofrecen interfaces de alto nivel para desarrollar aplicaciones.
Los protocolos de red son un conjunto de reglas que especifican el formato de los mensajes y las acciones apropiadas en cada caso ara transferir información entre computadoras.
Las familias de protocolos ocurren cuando en lugar de tener un solo protocolo gigante que especifique todos los detalles de todas las formas posibles d comunicación. La comunicación ente computadoras es dividido en sub partes. Así los protocolos son más fáciles de diseñar, analizar, imprentar y probar. Esta manera de partir un problema da origen a un conjunto de protocolos llamado familias de protocolos.
La organización internacional de normalización (ISO) definió uno de los modelos más importantes para comprender cada una de las etapas en la comunicación entre computadoras y el más utilizado es el modelo OSI

Hosts y Nodo

Nodo: los componentes computarizados de una red suelen llamarse nodos y cada uno tiene asignada una dirección que es una secuencia numérica única que lo identifica respecto a los demás. En general estos se dividen en 2 grandes tipos: nodo anfitrión (host) y nodos de comunicación. Los primeros agrupan a las computadoras productoras de mensajes que fluirán en la red mientas que los segundos se refieren a los dispositivos encargados de dirigir los mensaje por las rutas adecuadas que les permitan alcanzar su destino.

Host: computadoras conectados a la red, que proveen o utilizan servicios de ella. Los usuarios deben utilizar hosts para tener acceso a la red.Ofrecen servicios de transferencia de archivos, conexión remota, servidores de base de datos, servidores WWW, etc. Los usuarios que hacen uso de los hosts pueden a su vez pedir los mismos servicios a otras máquinas conectadas a la red.

Protocolo

son las reglas que dominan la sintaxis, semántica y sincronización de la comunicación.

Protocolo de comunicacion
1.- se busca un dominio
2.- llega al DNS y la convierte a IP
3.- si es qye esta disponible la pagina empieza la transferencia de datos y en caso de que no este disponible muestra error conexion

TCP/IP

son las siglas de Protocolo de Control de Transmisión/Protocolo de Internet
un sistema de protocolos que hacen posibles servicios Telnet, FTP, E-mail, y otros entre ordenadores que no pertenecen a la misma red.
* modelo de referencia de interconexion de sistemas abiertos.
*sistema de protocolos
*permite enlazar un nodo con otro
*permite q "convivan sistemas operativos diferentes

Datagrama

Un datagrama es un fragmento de paquete que es enviado con la suficiente información como para que la red pueda simplemente encaminar el fragmento hacia el Equipo Terminal de Datos (ETD) receptor, de manera independiente a los fragmentos restantes. Esto no garantiza que los paquetes lleguen en el orden adecuado o que todos lleguen a destino.
Protocolos basados en datagramas: IPX, UDP, IPoAC, CL. Los datagramas tienen cabida en los servicios de red no orientados a la conexión .Agrupación lógica de información que se envía como una unidad de capa de red a través de un medio de transmisión sin establecer con anterioridad un circuito virtual. Los datagramas IP son las unidades principales de información de Internet. Los términos trama, mensaje, paquete de red y segmento también se usan para describir las agrupaciones de información lógica en las diversas capas del modelo de referencia OSI y en los diversos círculos tecnológicos.
La estructura de un datagrama es: cabecera y datos.
Un datagrama tiene una cabecera de IP que contiene información de direcciones de la capa 3. Los encaminadores examinan la dirección de destino de la cabecera de IP, para dirigir los datagramas al destino.

La capa de IP se denomina no orientada a conexión ya que cada datagrama se encamina de forma independiente e IP no garantiza una entrega fiable, ni en secuencia, de los mismos. IP encamina su tráfico sin tener en cuenta la relación entre aplicaciones a la que pertenece un determinado datagrama

Trama

En redes una trama es una unidad de envío de datos. Viene a ser el equivalente de paquete de datos o Paquete de red, en el Nivel de enlace de datos del modelo OSI.
Normalmente una trama constará de cabecera, datos y cola. En la cola suele estar algún chequeo de errores. En la cabecera habrá campos de control de protocolo. La parte de datos es la que quiera transmitir en nivel de comunicación superior, típicamente el Nivel de red.
Para delimitar una trama se pueden emplear cuatro métodos:
1. por conteo de caracteres: al principio de la trama se pone el número de bytes que la componen, este método presenta un posible problema de sincronización.
2. por caracteres de principio y fin: en comunicaciones orientadas a caracteres se puede emplear un código de control (los que ocupan la parte inferior de la tabla de codificación ASCII) para representar el principio y fin de las tramas. Habitualmente se emplean STX (Start of Transmission: ASCII #2) para empezar y ETX (End of Transmission: ASCII #3) para terminar. Si se quieren transmitir datos arbitrarios se recurre a secuencias de escape para distinguir los datos de los caracteres de control.
3. por secuencias de bits: en comunicaciones orientadas a bit, se puede emplear una secuencia de bits para indicar el principio y fin de una trama. Se suele emplear el "guión", 01111110, en transmisión siempre que aparezcan cinco unos seguidos se rellena con un cero; en recepción siempre que tras cinco unos aparezca un cero se elimina.
4. por violación del nivel físico: se trata de introducir una señal, o nivel de señal, que no se corresponda ni con un uno ni con un cero. Por ejemplo si la codificación física es bipolar se puede usar el nivel de 0 voltios, o en Codificación Manchester se puede tener la señal a nivel alto o bajo durante todo el tiempo de

Paquete de redes

Reciben este nombre cada uno de los bloques en que se divide, en el nivel de Red, la información a enviar. Por debajo del nivel de red se habla de trama de red, aunque el concepto es análogo.
En todo sistema de comunicaciones resulta interesante dividir la información a enviar en bloques de un tamaño máximo conocido. Esto simplifica el control de la comunicación, las comprobaciones de errores, la gestión de los equipos de encaminamiento (routers), etc.

Estructura
Al igual que las tramas, los paquetes pueden estar formados por una cabecera, una parte de datos y una cola. En la cabecera estarán los campos que pueda necesitar el protocolo de nivel de red, en la cola, si la hubiere, se ubica normalmente algún mecanismo de comprobación de errores.
Dependiendo de sea una red de datagramas o de circuitos virtuales (CV), la cabecera del paquete contendrá la dirección de las estaciones de origen y destino o el identificador del CV. En las redes de datagramas no suele haber cola, porque no se comprueban errores, quedando esta tarea para el nivel de transporte.

Ejemplo: paquete de IP
El protocolo de red IP sólo tiene cabecera, ya que no realiza ninguna comprobación sobre el contenido del paquete. Sus campos se representan siempre alineados en múltiplos de 32 bits. Los campos son, por este orden:
• Versión: 4 bits, actualmente se usa la versión 4, aunque ya esta en funcionamiento la versión 6. Este campo permite a los routers discriminar si pueden tratar o no el paquete.
• Longitud de cabecera (IHL): 4 bits, indica el número de palabras de 32 bits que ocupa la cabecera. Esto es necesario porque la cabecera puede tener una longitud variable.
• Tipo de servicio: 6 bits (+2 bits que no se usan), en este campo se pensaba recoger la prioridad del paquete y el tipo de servicio deseado, pero los routers no hacen mucho caso de esto y en la práctica no se utiliza. Los tipos de servicios posibles serían:
o D: (Delay) Menor retardo, por ejemplo para audio o vídeo.
o T: (Throughput) Mayor velocidad, por ejemplo para envío de ficheros grandes.
o R: (Reliability) Mayor fiabilidad, para evitar en la medida de lo posible los reenvíos.
• Longitud del paquete: 16 bits, como esto lo incluye todo, el paquete más largo que puede enviar IP es de 65535 bytes, pero la carga útil será menor, porque hay que descontar lo que ocupa la propia cabecera.
• Identificación: 16 bits, Es un número de serie del paquete, si un paquete se parte en pedazos más pequeños por el camino (se fragmenta) cada uno de los fragmentos llevará el mismo número de identificación.
• control de fragmentación: son 16 bits que se dividen en:
o 1 bit vacío: sobraba sitio.
o 1 bit DF: del ínglés dont't fragment. Si vale 1 le advierte al router que este paquete no se corta.
o 1 bit MF: del inglés more fragments indica que éste es un fragmento de un paquete más grande y que, además, no es el último fragmento.
o desplazamiento de Fragmento: es la posición en la que empieza este fragmento respecto del paquete original.
• Tiempo de vida: 8 bits, en realidad se trata del número máximo de routers (o de saltos) que el paquete puede atravesar antes de ser descartado. Como máximo 255 saltos.
• Protocolo: 8 bits, este campo codifica el protocolo de nivel de transporte al que va destinado este paquete. Está unificado para todo el mundo en Números de protocolos por la IANA Internet Assigned Numbers Authority.
• Checksum de la cabecera: 16 bits, aunque no se comprueben los datos, la integridad de la cabecera sí es importante, por eso se comprueba.
• Direcciones de origen y destino: 32 bits cada una. Son las direcciones IP de la estaciones de origen y destino.
• Opciones: Esta parte puede estar presente o no, de estarlo su longitud máxima es de 40 bytes

GPS

El GPS funciona mediante una red de 27 satélites (24 operativos y 3 de respaldo) en órbita sobre el globo, a 20.200 km, con trayectorias sincronizadas para cubrir toda la superficie de la Tierra. Cuando se desea determinar la posición, el receptor que se utiliza para ello localiza automáticamente como mínimo tres satélites de la red, de los que recibe unas señales indicando la posición y el reloj de cada uno de ellos. Con base en estas señales, el aparato sincroniza el reloj del GPS y calcula el retraso de las señales; es decir, la distancia al satélite. Por "triangulación" calcula la posición en que éste se encuentra. La triangulación en el caso del GPS, a diferencia del caso 2-D que consiste en averiguar el ángulo respecto de puntos conocidos, se basa en determinar la distancia de cada satélite respecto al punto de medición. Conocidas las distancias, se determina fácilmente la propia posición relativa respecto a los tres satélites. Conociendo además las coordenadas o posición de cada uno de ellos por la señal que emiten, se obtiene la posición absoluta o coordenadas reales del punto de medición. También se consigue una exactitud extrema en el reloj del GPS, similar a la de los relojes atómicos que llevan a bordo cada uno de los satélites.

Enrutador

El enrutador direccionador, ruteador o encaminador es un dispositivo de hardware para interconexión de red de ordenadores que opera en la capa tres (nivel de red). Un router es un dispositivo para la interconexión de redes informáticas que permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.

Puente de red

de red (o divide una red en segmentos) haciendo el pasaje de datos de una red hacia otra, con base en la dirección física de destino de cada paquete.

Un bridge conecta dos segmentos de red como una sola red usando el mismo protocolo de establecimiento de red.

Funciona a través de una tabla de direcciones MAC detectadas en cada segmento a que está conectado. Cuando detecta que un nodo de uno de los segmentos está intentando transmitir datos a un nodo del otro, el bridge copia la trama para la otra subred. Por utilizar este mecanismo de aprendizaje automático, los bridges no necesitan configuración manual.

La principal diferencia entre un bridge y un hub es que el segundo pasa cualquier trama con cualquier destino para todos los otros nodos conectados, en cambio el primero sólo pasa las tramas pertenecientes a cada segmento. Esta característica mejora el rendimiento de las redes al disminuir el tráfico inútil.

Para hacer el bridging o interconexión de más de 2 redes, se utilizan los switch.

Se distinguen dos tipos de bridge:

Locales: sirven para enlazar directamente dos redes físicamente cercanas.
Remotos o de área extensa: se conectan en parejas, enlazando dos o más redes locales, formando una red de área extensa, a través de líneas telefónicas.

WAN

Una Red de Área Amplia (Wide Area Network o WAN, del inglés), es un tipo de red de computadoras capaz de cubrir distancias desde unos 100km hasta unos 1000 km, dando el servicio a un país o un continente. Un ejemplo de este tipo de redes sería RedIRIS, Internet o cualquier red en la cual no estén en un mismo edificio todos sus miembros (sobre la distancia hay discusión posible). Muchas WAN son construidas por y para una organización o empresa particular y son de uso privado, otras son construidas por los proveedores de Internet (ISP) para proveer de conexión a sus clientes.

Hoy en día Internet proporciona WAN de alta velocidad, y la necesidad de redes privadas WAN se ha reducido drásticamente mientras que las VPN que utilizan cifrado y otras técnicas para hacer esa red dedicada aumentan continuamente.

Normalmente la WAN es una red punto a punto, es decir, red de paquete conmutado. Las redes WAN pueden usar sistemas de comunicación vía satélite o de radio. Fue la aparición de los portátiles y los PDA la que trajo el concepto de redes inalámbricas.

Velocidad de WAN
Una red WAN puede contener distintos tipos de conexion. Puede ir desde 10 mb/s hasta 1000 mb/s y superiores.
La mejor conexion se halla en la fibra optica. La mas lenta es la satelital.
No existe un WAN con un solo tipo de conexion, de hehco es necesario y es mas economico enlazar puntos distantes con inalambrica o satelital.
Tenes ditintos tipos de alambrica: fibra (distinto grosor), utp (ditintos tipos), coaxil (de varias medidas), etc.
Inalambrica tiene varios formatos y frecuencias, satelital tiene acceso propietario, etc.

MAC

En redes de ordenadores la dirección MAC (control de acceso al medio) es un identificador de 48 bits (6 bloques hexadecimales) que corresponde de forma única a una ethernet de red. Se conoce también como la dirección física en cuanto identificar dispositivos de red. Es individual, cada dispositivo tiene su propia dirección MAC determinada y configurada por el IEEE (los últimos 24 bits) y el fabricante (los primeros 24 bits) utilizando el OUI. La mayoría de los protocolos que trabajan en la capa 2 del modelo OSI usan una de las tres numeraciones manejadas por el IEEE: MAC-48, EUI-48, y EUI-64 las cuales han sido diseñadas para ser identificadores globalmente únicos. No todos los protocolos de comunicación usan direcciones MAC, y no todos los protocolos requieren identificadores globalmente únicos.

Las direcciones MAC son únicas a nivel mundial, puesto que son escritas directamente, en forma binaria, en el hardware en su momento de fabricación. Debido a esto, las direcciones MAC son a veces llamadas "Direcciones Quemadas Dentro" (BIA, por las siglas de Burned-in Address).

En la mayoría de los casos no es necesario conocer la dirección MAC, ni para montar una red doméstica, ni para configurar la conexión a internet. Pero si queremos configurar una red wifi y habilitar en el punto de acceso un sistema de filtrado basado en MAC (a veces denominado filtrado por hardware), el cual solo permitirá el acceso a la red a adaptadores de red concretos, identificados con su MAC, entonces necesitamos conocer dicha dirección. Dicho medio de seguridad se puede considerar como un refuerzo de otros sistemas de seguridad, ya que teóricamente se trata de una dirección única y permanente, aunque en todos los sistemas operativos hay métodos que permiten a las tarjetas de red identificarse con direcciones MAC distintas de la real.

Concentrador

Un concentrador es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos
Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los puertos si detecta una colisión. Son la base para las redes de topología tipo estrella. Como alternativa existen los sistemas en los que los ordenadores están conectados en serie, es decir, a una línea que une varios o todos los ordenadores entre sí, antes de llegar al ordenador central. Llamado también repetidor multipuerto, existen 3 clases.

Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal
Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.
Dentro del modelo OSI el concentrador opera a nivel de la capa física, al igual que los repetidores, y puede ser implementado utilizando únicamente tecnología analógica. Simplemente une conexiones y no altera las tramas que le llegan.


*El concentrador envía información a ordenadores que no están interesados. A este nivel sólo hay un destinatario de la información, pero para asegurarse de que la recibe el concentrador envía la información a todos los ordenadores que están conectados a él, así seguro que acierta

*un concentrador funciona a la velocidad del dispositivo más lento de la red

Servidor (server)

Un server(servidor) es una computadora que contiene programas archivos o periféricos que pueden ser utilizados por otros nodos, es decir una maquina que ofrece servicios. Se pueden encontrar servidores de impresión, servidores de archivos, servidores de comunicaciones.

cliente

un cliente es la computadora donde trabaja el usuario (también conocía como work station). Este nodo recurre al servidor cuando necesita un servicio específico.
Actualmente se suelen utilizar para referirse a programas que requieren específicamente una conexión a otro programa, al que se denomina servidor y que suele estar en otra máquina.

Espectro electromagnetico

espectro electromagnético es la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite o absorbe Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir observar el espectro, permiten realizar medidas sobre éste, como la longitud de onda, la frecuencia y la intensidad de la radiación.

El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo (véase Cosmología física) aunque formalmente el espectro electromagnético es infinito y continuo.



¿Porque es importante el espectro electromagnético?
• porque es la relación entre la ciencia y tecnología: En la cual la ciencia es la q estudia que es y que hace y la tecnología estudia en que se puede aplicar.
• En la medicina: porque por medio de los rayos X se pueden hacer radiografías para detectar fisuras o cosas así en los huesos, rayo láser funciona para operaciones.

trama de red

una trama es una unidad de envío de datos. Viene a ser el equivalente de paquete de datos o Paquete de red, en el Nivel de enlace de datos del modelo OSI.

Normalmente una trama constará de cabecera, datos y cola. En la cola suele estar algún chequeo de errores. En la cabecera habrá campos de control de protocolo. La parte de datos es la que quiera transmitir en nivel de comunicación superior, típicamente el Nivel de red.

Para delimitar una trama se pueden emplear cuatro métodos:

1.por conteo de caracteres: al principio de la trama se pone el número de bytes querepresentar el principio y fin de las tramas. Habitualmente se emplean STX (Start of Transmission: ASCII #2) para empezar y ETX (End of Transmission: ASCII #3) para terminar. Si se quieren transmitir datos arbitrarios se recurre a secuencias de escape para distinguir los datos de los caracteres de control.
2.por secuencias de bits: en comunicaciones orientadas a bit, se puede emplear una secuencia de bits para indicar el principio y fin de una trama. Se suele emplear el "guión", 01111110, en transmisión siempre que aparezcan cinco unos seguidos se rellena con un cero; en recepción siempre que tras cinco unos aparezca un cero se elimina.
3.por violación del nivel físico: se trata de introducir una señal, o nivel de señal, que no se corresponda ni con un uno ni con un cero. Por ejemplo si la codificación física es bipolar se puede usar el nivel de 0 voltios, o en Codificación Manchester se puede tener la señal a nivel alto o bajo durante todo el tiempo de bit (evitando la transición de niveles característica de este sistema).

8 mar 2010

Historia del internet

Internet surgió de un proyecto desarrollado en Estados Unidos para apoyar a sus fuerzas militares. Luego de su creación fue utilizado por el gobierno, universidades y otros centros académicos.
Internet ha supuesto una revolución sin precedentes en el mundo de la informática y de las comunicaciones. Los inventos del telégrafo, teléfono, radio y ordenador sentaron las bases para esta integración de capacidades nunca antes vivida. Internet es a la vez una oportunidad de difusión mundial, un mecanismo de propagación de la información y un medio de colaboración e interacción entre los individuos y sus ordenadores independientemente de su localización geográfica.

La primera descripción documentada acerca de las interacciones sociales que podrían ser propiciadas a través del networking está contenida en una serie de memorándums escritos por J.C.R. Licklider, del Massachusetts Institute of Technology, en Agosto de 1962, en los cuales Licklider discute sobre su concepto de Galactic Network

A finales de 1966 Roberts se trasladó a la DARPA a desarrollar el concepto de red de ordenadores y rápidamente confeccionó su plan para ARPANET, publicándolo en 1967. En la conferencia en la que presentó el documento se exponía también un trabajo sobre el concepto de red de paquetes a cargo de Donald Davies y Roger Scantlebury del NPL. Scantlebury le habló a Roberts sobre su trabajo en el NPL así como sobre el de Paul Baran y otros en RAND. El grupo RAND había escrito un documento sobre redes de conmutación de paquetes para comunicación vocal segura en el ámbito militar en 1964.

La ARPANET original evolucionó hacia Internet. Internet se basó en la idea de que habría múltiples redes independientes, de diseño casi arbitrario, empezando por ARPANET como la red pionera de conmutación de paquetes, pero que pronto incluiría redes de paquetes por satélite, redes de paquetes por radio y otros tipos de red. Internet como ahora la conocemos encierra una idea técnica clave, la de arquitectura abierta de trabajo en red.
Bajo este enfoque, la elección de cualquier tecnología de red individual no respondería a una arquitectura específica de red sino que podría ser seleccionada libremente por un proveedor e interactuar con las otras redes a través del metanivel de la arquitectura de Internetworking. Hasta ese momento, había un sólo método para "federar" redes.


DARPA formalizó tres contratos con Stanford (Cerf), BBN (Ray Tomlinson) y UCLA (Peter Kirstein) para implementar TCP/IP

¿que es red?

es un sistema de comunicaciones que permite que un numero de dispositivos se comuniquen entre si

IEEE

Instituto de Ingenieros Electricistas y Electrónicos. una asociación técnico-profesional mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros electricistas, ingenieros en electrónica, científicos de la computación, ingenieros en informática, ingenieros en biomédica, ingenieros en telecomunicación e Ingenieros en Mecatrónica.

Dominio

es una red de identificación asociada a un grupo de dispositivos o equipos conectados a la red Internet.
El propósito principal de los nombres de dominio en internet y del sistema de nombres de dominio (DNS), es traducir las direcciones IP de cada modo activo en la red, a términos memorizables y fáciles de encontrar

NIC

El NIC (Network Information Center) es la autoridad que delega los nombres de dominio a quienes los solicitan. Cada país en el mundo cuenta con una autoridad que registra los nombres bajo su jurisdicción.
el NIC es quien se encarga de registrar los dominios de un país. Por ejemplo, México cuenta con su NIC que se encarga de registrar los dominios bajo .mx. Generalmente los NIC´s cobran una cuota de mantenimiento anual por cada dominio registrado. Cada organización elige el precio por mantenimiento que considera adecuado por sus servicios. Los NIC´s son entidades independientes a Urbano

IPv6, IPv4

El protocolo Internet versión 6 (IPv6) es una nueva versión de IP (Internet Protocol), definida en el RFC 2460 y diseñada para reemplazar a la versión 4 (IPv4) RFC 791, actualmente en uso dominante.
Diseñado por Steve Deering de Xerox PARC y Craig Mudge, IPv6 está destinado a sustituir a IPv4, cuyo límite en el número de direcciones de red admisibles está empezando a restringir el crecimiento de Internet y su uso, especialmente en China, India, y otros países asiáticos densamente poblados. Pero el nuevo estándar mejorará el servicio globalmente
IPv4 posibilita 4.294.967.296 (232) direcciones de red diferentes, un número inadecuado para dar una dirección a cada persona del planeta, y mucho menos a cada vehículo, teléfono, PDA, etcétera. En cambio, IPv6 admite 340.282.366.920.938.463.463.374.607.431.768.211.456 (2128 o 340 sextillones de) direcciones —cerca de 3,4 × 1020 (340 trillones de) direcciones por cada pulgada cuadrada (6,7 × 1017 o 670 mil billones de direcciones/mm2) de la superficie de La Tierra.